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Ttle development of current collection model has been completed. The detailed

description of this model has been presented and an article has been submitted to the J. of

Geophysical Research for publication. The manuscript entitled "Three-Dimensional Current

Collection Modesl fo a Highly Positive Potential Satellite in Space" is enclosed with this report.
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Abstract

Since the early development of probe theory by Langmuir and Blodgett [1924],

the problem of current collection by a charged spherically or cylindrically symmetric

body has been investigated by a number of authors (e.g. Parker and Murphy,

1967; Linson, 1969; Laframboise and Rubinstein, 1982). This paper overviews the

development of a fully three-dimensional particle simulation code which can be used

to understand the physics of current collection in three dimensions and can be used

to analyze data resulting from the future TSS (Tethered Satellite System) mission.

According to the configuration of TSS, we have construct two types of particle

simulation models, a simple-particle simulation (SIPS) model and a super-particle

simulation (SUPS) model, to study the electron transient response and its asymp-



totic behavior around a three dimensional, highly biased satellite. The potential

distribution surrounding the satellite is determined by solving Laplace's equation

in the SIPS model and by solving Poisson's equation in the SUPS model. Thus,

the potential distribution in space is independent of the density distribution of the

particles in the SIPS model but it does depend on the density distribution of the

particles in the SUPS model. The evolution of the potential distribution in the

SUPS model can be described as follows: (1) The potential distribution is spher-

ically symmetric in the beginning, (2) A spheroidal potential distribution occurs

in the region closest to the high potential satellite, (3) A dumbbell-shaped poten-

tial distribution eventually forms with areas of high potential in the polar regions.

When the spherical satellite is charged to a highly positive potential and immersed

in a plasma with a uniform magnetic field, the formation of an electron torus in the

equatorial plane (the plane is perpendicular to the magnetic field) and elongation

of the torus along the magnetic field are found in both the SIPS and the SUPS

models but the shape of the torus is different. The areas of high potential that exist

in the polar regions in the SUPS model exaggerates the elongation of the electron

torus along the magnetic field. The current collected by the satellite for different

magnetic field strengths are investigated in both the SIPS and SUPS models. Due

to the nonlinear effects present in the SUPS model, the oscillating phenomenon of

the current collection curve during the first 10 plasma periods can be seen (this

does not appear in the SIPS model). From the parametric studies, we find that

the oscillating phenomenon of the current collection curve occurs only when the

magnetic field strength is less than 0.2 gauss for the present model in this paper.
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1. Introduction

The Tethered Satellite System (TSS) is one of the numerous applications of

current collection by conducting bodies in a space plasma environment. Utiliza-

tion of TSS could enable us to understand the fundamental characteristics of space

plasma in the near earth environment and technologically test the possibility of

current collection in space. For an eastward-moving satellite-tether-shuttle system,

the satellite will be charged positively while the shuttle will be charged negatively

with respect to the ambient ionospheric plasma. A current circuit can be closed

by using the highly positive potential satellite to collect electrons from space and

two electron guns located in the shuttle cargo bay to eject collected electrons back

into space. When the satellite is biased to a highly positive potential, the particles

surrounding the satellite are influenced by the combined effects of the electric and

magnetic fields. In order to understand the physical phenomena of this configura-

tion, the study of current collection by a highly biased potential satellite becomes

important.

Early studies of a highly charged sphere in a space plasma can be classified

into qualitative and quantitative analyses. The qualitative behaviors of an electron

torus in the equatorial plane (perpendicular to the magnetic field line) surrounding a

highly charged sphere were described by the laboratory observations such as Quinn

and Chang [1966], Quinn and Fiorito [1967], Antoniades et al. [19901, Alport et

al. [1990], and Greaves et al. [1990]. The quantitative analyses of possible current

collected by a charged sphere in a space plasma were done by Parker and Murphy

[1967], Linson [1969], and Rubinstein and Laframboise [19821. Parker and Murphy

[1967] used the conservation of a single particle's canonical angular momentum to

evaluate the maximum possible current collected by a spherical probe in a uniform

magnetic field neglecting particle thermal motion and turbulent effects. Linson

[1969] introduced a parameter qc representing the turbulent effect (qc is determined

3



from experiments) to modified the Parker-Murphy model and presenteda constant

density cylindrical shieldingmodel. Taking into accountthe contribution from those

particles with encircling orbits, Rubinstein and Laframboise [1982] used kinetic

theory to developan analytical form estimating the upper bound current collected

by a spherical probe. However, the previous quantitative studies are concerned

with the estimation of steady state current collection by a high potential sphere

(the comparison between those previous quantitative studies and our numerical

results will be discussedin section a of this paper) while the transient responseof

electron behavior and the characteristic of instantaneous current collection curve

have not beendiscussed.

The study of current collection at highly positive electrodevoltageshas recently

becomemore prominent due to possibleapplications in the designof high-voltage

power systems by using TSS. In an effort to investigate the physics of a highly

biasedpotential satellite expectedin the shuttle electrodynamicTSS-1 experiment,

a number of numerical simulations have been performed. The numerical models

used in the studies of TSS can be classifiedinto fluid model (e.g. Ma and Schunk

[1989] and Sheldon [1994]) and particle model (e.g. Hwang et al. [1990,1992],

Vashi and Singh [1991], and Singh and Chaganti [1994]). In general, the fluid

model describesthe macroscopicbehavior of the system while the particle model

can better explain the microscopicbehavior of eachindividual particles and their

collective behavior. Ma and Schunk [1989]used a time-dependent fluid model to

simulate the initial responseof the particles around the highly biased potential

sphereand found that an electron torus initially existed in the equatorial plane and

eventually elongated along the magnetic field line. Sheldon [1994]used a steady

state fluid model to study the electroncurrent distribution and the angleof incidence

of thosecollectedelectronson the sphericalsatellite surface.To better understand

the electron trajectory around the high potential satellite, Hwang et al. [1990]
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utilized a two dimensional particle code to examine the electron trajectory in a

static TSS-1 model. In their model, they indicated that electrons were trapped and

the satellite was shielded when the magnetic field strength was greater than 0.35

gauss. This magnetic shielding is because of the/_ x/_ drift effect. Vashi and Singh

1 dimensional PIC (Particle in Cell) code to simulate the steady state[1991] used a 2 7

current collection by a long conducting cylinder in a magnetized plasma. In their

model, electrons are injected on the boundary of a prescribed high potential region

and the initial space charge effect is neglected (i.e. assume the calculation region

is initially a vacuum). Based on their previous investigations, Singh and Chaganti

[1994] further studied the energy distribution of the particles on the satellite surface.

They also found that the degree of current collection is dependent on the size of

their prescribed high potential region.

In order to study the evolution of the electron distribution surrounding a highly

positive potential satellite, Shiah et al. [1991] developed a three dimensional particle

code. Instead of assuming that the initial calculation region is a vacuum, they

initially put a finite number of Maxwellian electrons in the high potential region

to study the time-dependent electron response. From their numerical results, an

electron torus surrounded the high voltage satellite in the equatorial plane and

oscillated between the satellite surface and plasma sheath. Hwang et al. [1992] also

realized that the oscillation of the electron torus is a transient phenomenon. For

longer run times, the electron torus will gradually elongate along the magnetic field

line and finally become an "hour glass" distribution. This "hour glass" distribution

is consistent with the "magnetic bottle" described by Parker and Murphy [1967]

and the constant density cylindrical shielding model presented by Linson [1969].

The electron torus phenomena seen in numerical simulations (Shiah et al. [1991]

and Hwang et al. [1992]) are also consistent with the earlier fluid model by Ma and

Schunk [1989] and experimental observations by Quinn and Chang [1966], Quinn



and Fiorito [1967],Antoniades et al. [1990],Alport et al. [1990],and Greaveset al.

[19901.

In the previousnumerical simulationsof TSS(e.g. Ma and Schunk[1989],Vashi

and Singh [1991],Singh and Chaganti [1994],and Sheldon [1994]), the current col-

lection models are either spherical or cylindrical symmetry without discussingthe

effect of ion's motion on electron distribution and the characteristic of instanta-

neouscurrent collection in TSS. In order to seethe effect of ion's motion on the

transient responseof TSS, this paperpresentsthe simple-particle simulation (SIPS)

and the super-particle simulation (SUPS) models. The SIPSmodel treats eachsim-

ulation particle as one physical particle and the potential distribution in spaceis

independent of the density distribution of the particles. As to the SUPS model,

each simulation particle representsthe center of massof a particle cloud and the

potential distribution in spaceis dependenton the density distribution of the par-

ticles. To the best of our knowledge,most of the previous current collection models

usean approximation formula to describethe potential distribution around the high

potential body (e.g. Parker and Murphy [1967],Linson [1969],Singh and Chaganti

[1994])while the spacechargeeffecton the potential distribution and current collec-

tion havenot beendiscussed.The SUPSmodel in this paper will take into account

the spacecharge effect (a contribution from the ions and electrons) on the parti-

cle and potential distributions and the current collection. According to a realistic

configuration of TSS mission,the physicalmodel describedin this paper includes a

spherical satellite body, a cylindrical boom, and a spherical instrument (seefigure

1). When the spherical satellite body is charged to highly positive potential, the

electrons surrounding the satellite experiencethe electric and geomagneticfields.

To know the coupling effect of the electric and magnetic fields in three dimensions,

the three dimensional electron trajectories are discussedin section 3 of this paper.

Sincethe satellite velocity is much smaller than the electron thermal velocity, the



effect of the moving satellite is neglected for the present study. The basic theory

and numerical method are described in Section 2 while the numerical results of the

SIPS and the SUPS models are discussed in Section 3. The concluding remarks of

this paper are given in Section 4.

2. Theory

In agreement with the actual TSS configuration, the model adopted in this

paper assumes that a 40 cm diameter spherical instrument is attached to the 1.6 m

diameter spherical satellite body bv a 3 cm radius, 80 cm long cylindrical boom (see

figure 1). The spherical satellite body is fixed at 500 V, the cylindrical boom floats

at the local potential, and the spherical instrument can float at the local potential

or be charged to a constant potential. The governing equations of this model now

follow,

(a) Governing Equations:

The potential distribution in space is the first interesting thing to know in

this paper. Instead of using the approximation formulas as the previous current

collection models (e.g. Parker and Murphy [1967], Linson [19691, and Singh and

Chaganti [1994]), the potential distribution in space is given by solving Laplace's

equation in the SIPS model and by solving Poisson's equation in the SUPS model.

for SIPS model: V26 = 0

for SUPS model: V2¢ = -47rp = 47re(ne - hi)

(I.I)

(1.2)

where p is the plasma charge density, ne is the electron density, ni is the ion density,

and 4) is the space potential. Combining eqn (1.1) for the SIPS model (or eqn (1.2)

for the SUPS model) with the following equation
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= -v6, (2)

a11ows the potentialand electricfieldin space to be determined.

The equations of motion for electronsand ions in the presence of magnetic and

electricfieldsare

m_ dt - q_ E + -- (3)
C

,,_--_-= q, £+-- c (4)

where /_ is calculated from equation (2) and /_ is the given magnetic field.

increment of particle positions can be obtained by

The

d¢, =_dt (5)

d_'i= g_dt (6)

From equations (1) through (6), each individual particle trajectory is determined.

(b) Numerical Scheme:

In the simulation, the governing equations are solved in spherical coordinates

and the grid points are allowed to cluster in an exponential fashion in the region

of the boom and the instrument to reduce code memory and increase both the

efficiency and accuracy.

In spherical coordinates, equations (1) and (2) can be expressed as follows (Ref.

3)

1 [O(resin_-_)r2 sin_2
+

8

= 47re(he --ni) (7)



._ cO(b^ 1 0¢ _ 1 0¢ ^
= ,, (8)

where r is in the radial direction, 0 is in the azimuthal direction, and _ is in the

direction from south pole to north pole.

The seven-point finite difference form of equation (7) can be expressed as

ae¢i+ l,j,k -t- aw¢i-l,j,k -[- an ¢ i,j+ l,k -_- as¢i,j--l,k

nl- at¢i,j,k+l + ab¢i,j,k-1 -- ap¢i,j,k = 47re(he -- rti)i,j, k

Equation (9) can be written in matrix form as

(9)

Mq> = F (I0)

where M is the coefficient matrix, ,I) is the potential matrix and F is the charge

density matrix. A powerful iterative method by Vinsome [1976] is chosen to solve

eqn (10) in this paper.

The electric field is obtained by substituting the potential matrix solved in eqn

(10) back into eqn (8). Substituting this electric field into the equations of motion

(equations (3) and (4)) allows particle trajectories to be obtained by advancing

the particle velocities and positions according to eqns (3) through (6). If initial

particle positions and velocities are given, the new particle positions can be found.

From these new particle positions, new density distributions of the particles can be

obtained. In this paper, the SIPS model does not feed back the density distribution

of the particles but the SUPS model will substitute the new density distributions

back into Poisson's equation to close the iteration loop.

3. Results and Discussions

In the present three dimensional model, the spherical satellite body is charged

to 500 V, the cylindrical boom is biased to local potential, and the spherical in-

strument can be charged to either local potential or a constant potential. To solve
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this kind of satellite-plasma interaction problem, the only physical boundary is the

surfaceof the satellite. However, for the simulation, an artificial zero potential

boundary is required. To assurethat the artificial boundary doesnot alter the ac-

tual physical situation, this boundary needsto be put well within the unperturbed

plasma. For a conservativeestimation, this zero potential boundary is chosenat

420 crn from the center of the spherical satellite body. The chosen zero poten-

tial boundary is much larger than the plasma sheath calculated by the Modified

Child-Langmuir Law (Ref. 10).

In order to study the physics of this three dimensional current collection model,

the simple-particle simulation (SIPS) and the super-particle simulation (SUPS)

models are presented in this section. The comparison of initial potential distribu-

tions_ when the spherical instrument is charged to a constant potential or allowed

to float at the local potential, can be seen in figure 2. Figures 2.(a) and 2.(c) are

the contour plots of the potential distribution on the Y-Z plane and figures 2.(b)

and 2.(d) are the potential curves plotted along the boom direction (Y-axis). For

the case of floating instrument potential, the potential drops from 500 V on the

satellite surface to zero potential on the outer boundary with 420 crn radius (see

figures 2.(a) and 2.(b)). The potential disturbance surrounding the instrument can

be seen in figures 2.(e) and 2.(d) when the instrument potential is fixed at -100

V. In this case, the negative potential barrier near the instrument can exclude the

surrounding electrons and disturb current collection. In order to reduce the distur-

bance of instrument potential on current collection, the instrument potential will

be allowed to float at the local potential in our present studies. In the following

sections, we will concentrate on the investigations of initial response for the electron

distribution and current collection in both SIPS and SUPS models.

3.1 Simple-Particle Simulation (SIPS) Model
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When the boundary conditions of Poisson's equation are given, the only factor

that can influence the potential distribution is the density distribution of particles.

In general, the effect of the density distribution can be neglected if the satellite

potential is high and the absolute value of net space charge density is relatively low.

The criterion for neglecting the density distribution is not the main purpose of this

paper so that we will leave this topic to future studies. In our SIPS model, the

initial and boundary conditions are as follows: There are 10,000 electrons and ions

with Maxwellian velocity distributions uniformly located in the region between the

satellite surface and the spherical zero potential boundary (see figure 3.(a)). The

electron and ion temperature is 0.1 eV and the magnetic field is 0.4 gauss along

the Z-axis. The spherical satellite is charged to 500 V while the boom and the

spherical instrument float at the local potential. To account for the effect of the

particles coming from the plasma reservoir, particles are injected inward from the

zero potential boundary at each calculation time step. The particle injection rate is

determined by the assumption that the electric field will not influence the particles

located outside the zero potential boundary. Therefore, the only cause for particles

to strike the zero potential boundary is their thermal motion.

Since the electron thermal velocity is much faster than the ion thermal velocity,

we are more interested in the initial response of the electrons. As the satellite poten-

tial is turned on, electrons experience the electric and geomagnetic fields. The three

dimensional electron trajectories are investigated to determine the coupling effect

of the electric and magnetic fields. According to the Parker and Murphy model, an

electron will not be collected by the high potential satellite if it is originally located

outside the critical radius r0. The critical radius can be written as
I l

ro =a 1+ \mw2ca 2 , (11)

where ¢_ is the satellite potential, a is the satellite radius, Wc is the electron cyclotron

frequency, c is the electron charge, and m represents the electron mass. For a 500
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V spherical satellite with 80 cm radius located in the plasma with a 0.4 gauss

magnetic field strength in the positive Z direction, the critical radius calculated

from equation (11) is equal to 191.18 cm.

To verify the Parker and Murphy theory by our SIPS model, the three dimen-

sional trajectories of electrons with their initial positions located both inside and

outside the critical radius are presented in figures 3 and 4. In figure 3, we place a

0.1 eV electron outside the critical radius at point A (i.e. the position is x = 0.0

cm, y = 195 cm, and z = 500 cm in the cartesian coordinates). Figure 3.(a) is the

electron trajectory viewed in three dimensions and figure 3.(b) is the top view of

the electron trajectory. When the electron is outside the zero potential boundary

(from point A to point B in figure 3.(a)), the electron gyrates along the magnetic

field line and its gyroradius is on the order of 1 cm. As long as the electron enters

into the high potential region, the electron experiences the coupling effect of the

electric and magnetic fields. In our model, the electric field is always in the positive

radial direction (coming out the satellite surface) and the magnetic field is in the

positive Z direction, thus, the/_ x/_ drift force is in the clockwise direction (from

the top view). The electric force causes the electron to move from the northern

hemisphere down to the southern hemisphere and from the southern hemisphere up

to the northern hemisphere (see figure 3.(a)). The top view of the electron trajec-

tory (see figure 3.(b)) shows that the clockwise electron motion is due to the/_ x

drift force and the counterclockwise gyration motion is because of the effect of the

magnetic field. Figure 3.(b) also shows that the electron trajectory is confined in-

side the "magnetic bottle" described by Parker and Murphy [1967] and the satellite

is magnetically shielded from the electron trajectory.

In figure 4, an electron with the same thermal velocity as figure 3 is located

inside the critical radius at point A (i.e. the position is x = 0.0 crn, y = 170

crn, and z = 500 cm in the cartesian coordinates). The three dimensional electron
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trajectory in figure 4.(a) shows that the coupling effect of the electric and magnetic

field causes the electron to gyrate around the satellite. The /_ x /_ drift force

moves the electron in the clockwise direction and the electron gyration motion is

in the counterclockwise direction (see figure 4.(b)). Finally, the electron will be

collected by the satellite (see figure 4.(1)) point C). From the parametric studies, we

found that the criterion to determine whether the electron will be collected by the

satellite is not strictly defined by the critical radius described by equation (11). The

difference results from neglecting electron thermal motion and having the different

prescribed potential distribution in the Parker and Murphy model. To test the

effect of magnetic field strength oil electron trajectories, the magnetic field strength

(0.4 gauss in figure 3) is increased to 0.5 gauss in figure 5. Comparing figures 5 and

3.(b) shows that the satellite shielded zone is increased with increasing magnetic

field strength.

The evolution of the electron distribution can be seen in figure 6. From figures

6.(a) through 6.(c), a strong electron torus embedded in a tenuous electron cloud

is gradually formed in the equatorial plane. When the calculation time is equal to

4.3 plasma periods (see figure 6.((1)), the tenuous electron cloud has disappeared

and the strong electron torus has elongated along the magnetic field line. The

formation of the electron torus in the equatorial plane and its elongation along the

magnetic field line are similar to the early experimental observations by Quinn and

Chang [1966], Quinn and Fiorito [1967], Antoniades, et al. [1990], Alport et al.,

[1990], and Greaves et al., [1990]. The trapping of electrons in the equatorial plane

(see figure 6.(d)) is also consistent with the "magnetic bottle" described by Parker

and Murphy [1967]. Although the phenomenon of an electron torus surrounding a

highly charged sphere has discovered by previous observations and reported in the

fluid model by Ma and Schunk [1989] and Sheldon [1994], the results simulated by

our three dimensional particle code can better describe the relationship between
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the formation of the electron torus and "magnetic bottle" described by Parker and

Murphy [1967] in TSS. Since the characteristics of the current-voltage curve for a

charged sphere have been studied by previous current collection models, this paper

will concentrate on the investigation of the instantaneous current collection curve

which has not been presented in previous studies.

During the first Tethered Satellite System (TSS-1) mission, the system was

operated in the ionosphere with the plasma density in the range of 10 _ cm -3 to

106 cm -a which corresponds to 1013 total particles in the present model. Due to

the limitation of computer memory and calculation time, it is impossible to use so

many simulation particles in our calculation. In the SIPS model, a factor described

by Singh and Chaganti [1994] can be used to scale up the simulation particles to

the level of the physical particles. This scale up factor fc can be written as

T_O _tot

fc - Ntot (12)

where no is the ambient plasma density, Vtot is the volume of calculation region,

and Ntot is the number of particles in the simulation. Thus, the current collected

by the satellite can be estimated as

_ AN_e

+ = +% X/ (13)

where ANc is the number of the collected electrons per time step, e is the electron

charge, and At is the magnitude of each numerical calculation time step. When the

satellite potential is turned on, the electrons experience a three dimensional Lorentz

force. The electric force causes electrons to move radially toward the satellite surface

while the /_ x /? drift force causes electrons to gyrate in the azimuthal direction.

The influence of the magnetic field strength on the current collection curve can be

seen in figure 7. In figure 7.(a), the collected current reaches a peak value of 2.4

amp at 1.4 plasma periods and decreases to a small value after 4.3 plasma periods.
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If we look at the electron distribution, it is clear that the current curve drops to a

small value at 4.3 plasma periods is due to the strong electron torus formed in the

equatorial plane at that time. Furthermore, the secondpulse seenin figure 7.(a) is

becauseof the changingof the electron distribution from a strong electron torus to

a cylindrical shieldingzoneat this time. After 10plasmaperiods, the instantaneous

current will reach a quasi-steadystate value on the order of 10-2 A.

As the magnetic field strength is increased, the time needed to reach the peak

current as well as the magnitude of the peak current are decreased (i.e. it takes

0.9 plasma periods to reach 1.6 amp in figure 7.(b) and 0.3 plasma periods to reach

1.0 amp in figure 7.(c)). This phenomenon can be explained as follows: When the

magnetic field strength is increased, the increasing effect of the /_ x /3 drift force

tends to move electrons in the azimuthal direction instead of the radial direction.

This increasing azimuthal motion can cause electrons to stay in the high potential

region longer than before and reduce the current collection rate during the first

10 plasma periods. From the previous studies of the electron distribution, it was

seen that the electron torus initially forms in the equatorial plane and eventually

elongates along the magnetic field line. By comparing the electron distribution

with the current collection curve, one sees that the formation and elongation of the

electron torus will be accomplished in less than 10 plasma periods. After 10 plasma

periods, most of the gyrating electrons will be collected by the satellite so that the

collected current approaches a quasi-steady state value.

For a sphere with radius a in a plasma, the random current IR caused by the

electron thermal motion can be expressed as

1

IR=47ra2en0(k2@m_) _ (14)

where k is Boltzmann's constant, and T and no are the temperature and ambient

number density of the electrons. On the basis of this definition of random current
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In, a spherical body with 80 cm radius can collect 6.8 mA random current from

an ambient plasma with 0.1 eV temperature and 105 cTr_ -3 density. When this

spherical body is charged to a positive potential and immersed in a plasma with

a magnetic field, the electric field tends to increase the current collection while

the/_ x/_ drift force tends to decrease the current collected by the high potential

body. Whether the current collected by the charged body should be larger than the

random current depends on the potential on the charged body and the magnetic

field strength. According to our physical model, the estimates of current collection

from Parker and Murphy [1967] and Rubinstein and Laframboise [1982] are on the

order of 0.02 A. In figure 7, the quasi-steady state current after 10 plasma periods

is on the order of 0.02 to 0.04 A which is larger than the random current and similar

to the estimates from Parker and Murphy [1967] and Rubinstein and Laframboise

[19821 .

3.2 Super-Particle Simulation (SUPS) Model

In the previous discussions, tile simple-particle simulation (SIPS) model is only

valid for the highly charged potential satellite in a relatively low density plasma and

it treats each simulation particle as one physical particle. In the super-particle sim-

ulation (SUPS) model, particles are regarded as finite-sized clouds of electrons or

ions, the position of the superparticles being the center of mass of the clouds and

their velocities being the mean velocities of the electrons or ions. In order to use

the limited simulation particles to study millions of physical particles, the scale up

factor described by equation (12) can be used to magnify the charge and mass of

the simulation particles to the level of the particle clouds. Due to the increasing

charge and mass of the simulation particles, the time-dependent density distribu-

tion of the particles becomes important and can not be ignored in the calculation.

Hence, a self-consistent iteration loop described in section 2 is required to update
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the superparticles information at eachiteration cycle. In order to assignthe super-

particle's information to the grid points, a suitable particle assignmentfunction is

required. The necessaryproperties of a particle assignmentfunction are that the

assignmentshould satisfy the long rangeconstraint and the smoothnessconstraint.

The long range constraint meansthat the assignmentshould be over a number of

grid points far from the sourcechargeand the smoothnessconstraint meansthat the

assignmentshould vary smoothly with the location of the particles. To accomplish

these constraints, the sinc function described by Hockney and Eastwood [1988] is

chosen as the superparticle assignment function in this study. In this section, we

will discuss one-component (i.e. only electrons are considered) and two-component

(i.e. electrons and ions are considered) cases. The one-component case does not

represent a real situation in space. The reason for showing it is to emphasize the

importance of ion motion in the SUPS model.

As we mentioned in the SIPS model, when the boundary conditions are given,

the only factor that can influence the potential distribution is the source term in

Poisson's equation (i.e. 4rre(ni- n_)in equation (1.2)). The negative source term

tends to decrease the space potential while the positive source term tends to increase

the space potential. For the one-component case, we only include electrons in the

calculation and ignore the existence of the ions. When the ions are not considered,

the source term in Poisson's equation becomes negative and will drop the potential

to a negative value. Figure 8.(b) shows that, in this case, the negative potential

region appears in most of the calculation domain at 0.86 plasma periods even if the

sateUite potential is fixed at 500 V positive.

For the two-component case, electrons and ions are both considered in the

calculation. The contour plot of the potential distribution in Y-Z plane and the

potential curve along the boom direction (Y-axis) at 0.86 plasma periods are plotted

in figures 8.(c) and 8.(d) (electrons and ions are considered). Due to the existence of
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the ions, the negative potential region in figures 8.(a) and 8.(b) (produced when ions

are not considered) will disappear. It shows that the spheroid potential distribution

occurs in the region close to the satellite (see figure 8.(c)) and the potential smoothly

decays from 500 V on the satellite surface (R = 80 crn) to zero at the zero potential

boundary (R = 420 crn) (see figure 8.(d)). From the previous discussion and the

comparison of figures 8.(a).(b) and 8.(c).(d), it can be concluded that the existence

of the ions does play an important role (i.e. ions neutralize the negative space

charge) in the real physical problem.

To examine the effect of the ion population on electron behavior in the SUPS

model, the evolution of electron transient response is shown in figure 9. In the SUPS

model (see figure 9), the formation of the electron cloud and the electron torus are

similar to the SIPS model (see figure 6). As the calculation time increases, the

electron cloud surrounding the satellite (see figure 9.(b)) gradually becomes a strong

electron torus in the equatorial plane (see figure 9.(c)) and eventually elongates

along the magnetic field line (see figure 9.(d)). As the electron torus forms in the

equatorial plane, the high potential areas gradually develop in the polar regions (see

figures 10 and 11). Comparing figure 9.(d) with figure 6.(d), one sees that the high

potential areas in the polar regions will attract the electrons from the torus and

cause the torus to stretch along the magnetic field line faster than it would in the

SIPS model. From the numerical results, the evolution of the potential distribution

can be understood as the potential changing from a spheroidal distribution with the

major axis along the magnetic field line (see figure 10) to a dumbbell distribution

with two high potential areas in the polar regions (see figure 11). Owing to the

existence of these two high potential areas, the ions will be gradually excluded from

these areas as the calculation time increases (see figure 12). The phenomenon of

excluding ions along the magnetic field line can cause the zero potential boundary to

extend along the magnetic field line. Therefore, the chosen spherical zero potential
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boundary needs to be modified in fllture simulation studies of the steady state.

In addition to the previous investigations of the particle and potential distribu-

tions, we are further interested in the study of quasi-steady state current collected

by the satellite in the SUPS model. The current collected by the satellite is shown

in figure 13 for different magnetic field strengths. It should be noted that the peak

value of the current decreases with increasing magnetic field strength. After 10

plasma periods, the current collection curve will reach a quasi-steady state value

on the order of 0.1 amp which is larger than the quasi-steady state current pre-

dicted in the SIPS model (0.02 to 0.04 A in figure 7). The difference of quasi-steady

state current between SIPS and SUPS models could be due to the buildup of high

potential regions in the SUPS model that are not included in the SIPS model. An-

other interesting thing is the characteristic of the current collection curve before 10

plasma periods when the magnetic field strength is 0.2 gauss (see figure 13.(a)).

In order to determine why the current collection curve has several peaks in this

region, we present four electron distributions at the peaks and valleys of the cur-

rent collection curve. The electron distributions in figures 14.(a), (b), (c), and (d)

are at the same times as positions (1), (2), (3), and (4) in figure 13.(a). When the

satellite is shielded by the electron torus (see figures 14.(a) and 14.(c)), the current

collection curve drops down to a mininmm (positions (1) and (3) in figure 13.(a)).

On the contrary, when the shielding torus collapses (see figures 14.(b) and 14.(d)),

the current collection curve climbs to a peak (positions (2) and (4) in figure 13.(a)).

According to our parametric studies, this character of the current collection curve

before 10 plasma periods happens when the magnetic field strength is lower than

0.2 gauss. If we combine equations (3) and (5) together, the electron position can

be described by

me-_+ x -- -qeE(r_,t)=0 (15)c dt

where /_(r_,t) is a function of time and particle position. The second term of
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equation (15) tends to changethe direction of the electron motion and keepsthe

electrons from moving toward the satellite. The third term of equation (15) is a

time-dependent nonlinear term which tends to moveelectrons toward high poten-

tial regions. If we compare equation (15) with a 1-D spring system, the second

term of equation (15) is similar to the damping force and the third term of equa-

tion (15) resemblesthe combined effect of the spring force and a time-dependent

external force. When the damping force is lower than a critical value, the system

will undergo vibration. Due to the coupling effect of the secondand third terms

in equation (15), the current collection curve may oscillate for a while when the

magnetic field strength is lower than somespecificvalue(e.g. 0.2 gauss for a 500 V

potential satellite in our model). In a strict sense, equation (15) is a three dimen-

sional equation and the magnetic field does not dissipate energy so that the electron

behavior is not the same as a 1-D spring system. If we compare figures 13.(a) with

7.(a), one sees that the oscillating current curve does not occur in the SIPS model.

This is another effect caused by ion motion in the SUPS model.

4. Concluding remarks

In this paper, we have developed a fully three dimensional self-consistent code

with realistic geometry of TSS to study the current collection problem by using the

simple-particle simulation (SIPS) and the super-particle simulation (SUPS) models.

In general, the SIPS model treats each simulation particle as one physical particle

and the effect of the density distribution of the particles can be neglected. As a

result, the electric field is independent of the time in the SIPS model. On the other

hand, the SUPS model regards each simulation particle as a finite-sized particle

cloud (this can be defined as a superparticle). Due to the increased charge and mass

of the superparticle, the effect of the density distribution of the particles becomes

important, thus, the electric field is time-dependent in the SUPS model. When
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the potential of the satellite is turned on in the plasma with a constant magnetic

field, a strong electron torus embedded in a tenuous electron cloud will form in the

equatorial plane as shown in both the SIPS and the SUPS models.

In the SIPS model, the tenuous electron cloud will disappear and the strong

electron torus will gradually elongate along the magnetic field after a longer com-

puter run time. Finally, the electron torus becomes an "hour glass" shielding

zone which is similar to the "magnetic bottle" described by Parker and Murphy

[1967]. According to the investigation of the three dimensional electron trajec-

tory, the satellite is shielded from the electron trajectory if the initial position of

the electron is located outside the critical radius described by Parker and Murphy

[1967]. The shielding zone of the satellite is increased with increasing magnetic field

strength. From the investigation of current collection by the satellite, we find that

the peak value of the current collection curve decreases with increasing magnetic

field strength and the current curve will reach a quasi-steady state value on the

order of 10 .2 A after 10 plasma periods.

In the SUPS model, ion motion will influence not only the electron distribution

but also the current collected by the satellite. From our numerical results, the

spheroid potential distribution around the satellite surface only exists during the

early stage. After the formation of the electron torus in the equatorial plane, high

potential areas will form in the polar regions as a result of the rapid evacuation of

electrons along the field lines that terminates on the satellite. These high potential

areas in the polar regions can attract the electrons from the electron torus in the

equatorial plane, thus, the elongation of the electron torus along the magnetic field

line in the SUPS model is faster than that in the SIPS model. In addition, the ions

will be gradually excluded from the high potential areas in the polar regions. In

fact, over much longer time, this region of positive space charge should propagate

along the field lines away from the satellite at the ion acoustic speed. As a result
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of the effect of ions in the SUPS model, the peak current in the SUPS model is less

than that in the SIPS model but the quasi-steady state current in the SUPS model

is larger than that in the SIPS model. The inclusion of ions also appears to cause

the oscillations of the current collected by the satellite during the first 10 plasma

periods. When the satellite is shielded from the electron torus, the collected current

drops to a minimum. When the electron torus collapses by the electric force, the

collected current increases to a peak value. This oscillating phenomenon only occurs

when the magnetic field strength is lower than 0.2 gauss and disappears after 10

plasma periods in our model.

In summary, the transient response of the electron distribution and current

collection have been investigated by using the SIPS and the SUPS models. The

SIPS model is only valid for a highly biased potential satellite in a relatively low

density plasma (i.e. the space charge effect is neglected) while the SUPS model can

be used in the most general case (i.e. the space charge effect is included). From our

previous numerical results, the best approach to investigate the effect of ion's mo-

tion on current collection is to use the SUPS model with the inclusion of ions. The

three dimensional self-consistent particle code developed in this paper, including

the density distribution effect and thc interaction of three dimensional electric and

magnetic fields, is essentially new and has a wide range of applications. Particularly,

this code can be used to investigate the particle and potential distributions around

three dimensional bodies and predict the collected electron current by the system.

This is especially applicable to the reflight of the TSS experiment. In addition,

there are several parameters (i.e. satellite potential, boom potential, magnetic field

strength, instrument position, and instrument potential) that could be changed to

study the current collection problem in different regions of parameter space. Fur-

thermore, these models can be used to investigate several other topics of interest to

the TSS mission (e.g. the wake effect due to the satellite motion, the distribution of
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collectedelectron energy,and the position of the collected electrons on the satellite.

boom or instrument surfaces). In the TSS-1 mission, the resolution of the instru-

ment is on the order of 10 .3 seconds, thus, the experimental measurements can not

resolve the temporal effects discussed in this paper. The limitation of our model is

that the short time step required in our simulation currently makes it impractical

to model on timeseales comparable to the resolution limit of the instrument on the

TSS-1 satellite. If, at this short time, steady state conditions are reached, then it

should apply. Otherwise, a much longer numerical simulation time is needed for the

study of current collection problem in a steady state situation.
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Figure Captions

Fig. 1 The three dimensional current collection model. (Rs = 80 cm is the radius

of the spherical satellite body, R,r = 20 cm is the radius of the spherical instrument,

/;B = 80 cm is the length of the cylindrical boom, and Ro = 420 crn is the zero

potential boundary)

Fig. 2 The effect of the instrument potential on the initial potential distribu-

tion: (a) the potential distribution on the Y-Z plane (instrument is floated to local

potential). (b) the potential curve along the boom direction (instrument is floated

to local potential). (c) the potential distribution on the Y-Z plane (instrument is

biased to -100 V). (d) the potential curve along the boom direction (instrument

is biased to -100 V).

Fig. 3 The electron originally located outside the critical radius at x = 0.0 cm,

y = 195 cm, and z = 500 cm in cartesian coordinates. (¢_ = 500 V, B = 0.4 gauss

in the positive Z direction). (a) the 3-D electron trajectory. (b) the top view of the

electron trajectory.

Fig. 4 The electron originally located outside the critical radius at x = 0.0 cm,

!1 = 170 cm, and z = 500 crn in cartesian coordinates. (¢_ = 500 V, B = 0.4 gauss

in the positive Z direction). (a) the 3-D electron trajectory. (b) the top view of the

electron trajectory.

Fig. 5 The top view of the electron trajectory. Electron originally located outside

the critical radius at x = 0.0 cm, y = 195 cm, and z = 500 cm in cartesian

coordinates. (¢_ = 500 V, B = 0.5 gauss in the positive Z direction).

Fig. 6 The evolution of the electron distribution in the SIPS model. (¢_ = 500

V, B = 0.4 gauss in the positive Z direction)
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Fig. 7 The effect of the magnetic field strength on current collection in the SIPS

model. The peak valueof the current is decreasedwith the increasingmagnetic field

strength and the current reachesa quasi-steadystate value on the order of 10.2 A

after 10 plasma periods.

Fig. 8 The comparison of potential distribution around the satellite between

one-component (ions are not considered) and two-component (electrons and ions

are considered) cases in the SUPS model. (the calculation time is equal to 0.86

plasma periods).

Fig. 9 The evolution of the electron distribution in the SUPS model. (¢_ = 500

V, B = 0.4 gauss in the positive Z direction)

Fig. 10 The potential distribution around the satellite with the consideration of

ion motion in the SUPS model (the calculation time is equal to 1.14 plasma periods).

The spheroid potential distribution exists in the region close to the satellite body.

Fig. 11 The potential distribution around the satellite with the consideration

of ion motion in the SUPS model (the calculation time is equal to 2.846 plasma

periods). Due to the high population of ions in the polar regions, a high potential

distribution can be built up in the north and south poles.

Fig. 12 The ion distribution in the SUPS model (the calculation time is equal to

22.768 plasma periods). Due to the existence of the high potential area in the polar

regions, the ion density in the polar regions is lower than the equatorial region.

Fig. 13 The effect of the magnetic field strength on current collection in the

SUPS model. The peak value of the current is lower than the SIPS model and the

quasi-steady state current is on the order of 0.1 amp which is larger than the SIPS

model.
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Fig. 14 Tile evolution of the electron distribution in the SUPS model. The

magnetic field is 0.2 gauss in the positive Z-direction. The electron distributions of

(a), (b), (c), and (d) relate to positions (1), (2), (3), and (4) in figure 13.(a).

28



1t

ooo_OO ..... oO_oo o

o° °o

oo ...........

_oO_ .... OOOoo

• oO o_
• • • • °o

°_°Ooo ........ oo_°_°



.t00_

200

"_ 0

-20O

-40O

5OO

4OO

3OO

_ 200

IO0

Potential Contour in Y-Z P]:_r:e

100 200 300 4111) -, r) O()0

Y-Axis (cm_

(a)

Potential Curve (Along the Boom

1O0 200 300 400 _' '_J _(}0
R-DLstan¢¢ (cml

(b)

400;

200

-200

-40O

Potential Contour in Y-Z Plane

L00 200 300 400 500 600
Y-Axis (cm)

(c)

Potential Curve fAIong the Boom)
......... _......... v......... , ......... v......... Y.........

400

__ 2oo

.20O
0

1
....... , ......... i ......... , ......... , ......... , .......

100 200 300 400 500 600
R-Distance (cm)

(d)



-.. ."

(a) 3-D view

-<

\

oOO

\

X

(b) Top view



/

,!, A

.

(a) 3-D view

/

/

/

×

(b) Top view



/

/'

/
!
I
I
l
1

2
\

o

°."

..... .o.°'°°"

/

×

f



- _.:_;! :'c.'.:_.)_,...._ _

•,,_L,_-.,° 4-_._,o"

• ._,,_._ _:t,_,: • _.

• .-...;,;-

Z

•..i _._='L:: _,''" • "

•"._:;'_:,-:'::,, ;.'."

(a) Time = 0.000 2_,'c% (b) Time : 1.423 2r,./_p

Z

", . ."

-_ . . ..•

-.,.

>-<

(c) Time = 2.846 2_T,%% (d) Time = 4.269 2_o),,



Current Collected bv The Satellite

i0 l5 2o 25
Time t2_co.1

(a) B,= 0.2 Gauss

2_
p_

2.0
G
--, 1.5

i.0
0.5

0.01:

0

Current Collected by The Satellite

5 10 15 20 25
Time (2_co,)

(b) B,= 0.4 Gauss

Current Collected bv The Satellite

23_

2.0
1.5

_ .0

0.5

0.0

0 S

]

10 15 20 25
Time (2vdoo.)

(c) B,= 0.6 Gauss



Potential Contour in Y-Z Pl:me Potential Contour in Y-Z Plane

400 ............... , ............................. 400_

200_ 2

-200 -200_
-4O0 -400

100 200 300 4_]1) 5_}0 600 0 100 200 300 400 500 600
Y-Axis (cm_ Y-Axis (era)

(a) (c)

6OO

400

0

-200_

Potential Curve (Along the Boom)
......... v ......... T......... i ......... _ ......... i ..........

0 100 200 300 -_o0 5f)o 600
R-Distanea lcm)

(b)

500

400

-_ 300

2001
t_

100

Potential Curve {Along the Boom)
....... v......... , ......... 1 ......... i ......... I .........

0 ............ _li, .......

0 100 200 300 400 500 600
R-Distance (cm)

(d)



Z
J

e_,_ o. ,_-_.,.

;}'.. ,', ;: ...?.?,,.;,.,.._

_....:...__,..;¢_;,_
. ! .... ...":":.,_,..,,,._=iX _,_,-

.__(f

Z
/

.--' ",o.°,.°.

_,:,,,,,_,_._-.. ! -..._

- =._/'i.,.q,L'__../_/4, ";:.:./_""..-"'" "":':. •

• ,,.._,,,_:...,_._...:._.._._,,,._,::.;.....;.."

• ""..' o.....,o

(a) Time-- 0.000 2_'_p (b) Time = 1.423 2n/_p

. .:"-'.'_%:.-:,--,, ..-""

• .oo .-

Z

o°i°o°°'_'°o-.°
°° , :.- ,., . .. .

• • .;.:_,. :_. _- _.._,,' .&. •.

•" ;_.W.'"_i','._ t_ "..

.," .:,_-. ",.._.,_.._ ..
_,....•_:,_. ...

• ; ..i_.." "-_'_:: ' . "

•. . ;_.. _._. :...
•. . : .... . • : o-9"_ _"• __. -.:._.,...._ ..
"., . i9_.':_";_;• :;,_. :.

•...;_,_.::_}-:;_...

_..<

(c) Time = 2.846 2_/_p (d) Time = 4.269 2rdm t,

'.:q



.<

Potential Contour in Y-Z Plane

400

200

o

-200

-400

0 I00 200 3_;0 4o0 500 600

Y-Axns (cml

5OO

400,

300

- 200

100

0

0

Potential Curve (Along the Boom)

100 200 _c_o 400 500 600

R-Distance (cm)

{b)



PotentialConlourinY-ZPlane
400

ga

-200_
-400

0 100 200 _{10 400 500 600

Y-Axis (cm)

(a}

5001

400

0

0

-_ 300

200
e_

100

Potential Curve I AIong the Boom)

100 2o() _) zoo 500 600

R-I)Nance Icm)

tbt

,\



Z

-_ '. I '' o o,o ,

..4 _.. ,-', _ , . , ._. ._:_

._:,_.;'t"..'_.. _- .':, ",'l. : .;""'_;:"-',':.':.."'":"'=':',
1;.)J"_ "_ ,.i.{ ".'. , .. • 1 "' .', " " _" ,,r.. ",.;, _ ".,.
._._'t" =.._" _._,'. • ..,.-'I"_%" : o';. ,,._."i..:i.._.

_.:,,.,_,:,,_....,.?,: .-.,..;_,.[ _ .:_ !,_:,._,-,', ._ :.._,':;:

.._,.._.,-_-,_._ :,.;.,.--._..,._/_., ..:,_,"...:....-.....,
_,. ,'_ ,;" ",,_., '.:.:.., . .: .,.' _;,..',, _ /_,,'-;: .:}.'.._,
,,*; ;:, • ..,_ : ... •,. -:;., , ..':,._;, _b.. _... :_.,._. '_I'
"_ _.- _ _" ' ",'' "" " " "' "" "..,r '" '_'

-_,, ,_;,.., _ -.;.. :',_

_:_'> " ' ' " " ' "'"':" I" _'"
• _;""_.. : _ . ' " . , "', _,-_. I.

•,.. ,:...... :, ..., :,,_ :. _,_.
..,-.., ........ ':,.



2.51

<_2.0
t31

1.01

0.5_

0.01

0

Current Collected by The Satellite

_4J

10 15 20 25

Time (2g/m,)
(a) Bt= 0.2 gauss

Current Collected by The Satellite
2..5.

_. 2.0

t3-

0 5 10 15 20 25

Time (2g/o_)
(b) Bt= 0.4 gauss

2.5

2.0

g 1.o
..t

0.5

0.0

0

Current Collected by The Satellite

5 10 15 20 25

Time (2n/oJ
(c) B_= 0.6 gauss

/



7

-,., ,.

_,.-(

Z

•......_ __._g,,_,_ _

". _ -Io" • " " "-)'-¢-..

'-........, o.,-" ."

(a) Time = 2.561 2_,'o_ (b) Time = 4.269 2rdt.op

7
/

..°o;.-o. oo°..

•o.!_, I,_."

• _i,. 'iI
• {;?lm • ,

L,(

7

:

°

,,,°,°o...-"

f

(c) Time = 5.123 2_(% (d) Time = 6.261 2n/o_p



DOC #: 24943 ABSTRACT SCREEN PAGE: 1

Research on Orbital Plasma-Electrodynamics (ROPE)

** WORDS NOT FOUND *

ABQ: NC

ABA: Author (revised)

Since the development of probe theory by Langmuir

and Blodgett, the problem of current collection by

a charged spherically or cylindrically symmetric

body has been investigated by a number of authors.

This paper overviews the development of a fully

three-dimensional particle simulation code which

can be used to understand the physics of current

collection in three dimensions and can be used to

analyze data resulting from the future tethered

satellite system (TSS) According to the TSS

configurations, two types of particle simulation

models were constructed: a simple particle

simulation (SIPS) and a super particle simulation

(SUPS). The models study the electron transient

response and its asymptotic behavior around a

three dimensional, highly biased satellite. The

potential distribution surrounding the satellite

is determined by solving Laplace's equation in the

SIPS model and by solving Poisson's equation in

the SUPS model.

SIPS

SUPS

SIPS

SUPS

CIN: SAF

KIN: JXP

AIN:

PFI=ABA LIST; PF2=RESET; PF3=SIGNON; PF4=RELEASE FROM SUBQ; PF5=SELECTION;

PF6=SUBQUEUE; PF7=STORE ABSTRACT; PF8:MAI; PFI0:SEND TO 'MAIQ';

PFI4:PREVIOUS PAGE; PFI5:NEXT PAGE; PFI9:TITLE-EXT; PF20:INDEX TERMS

4B. X () A :--PC LINE ii COL 2



DOC#: 24943 ABSTRACTSCREEN PAGE:2

Research on Orbital Plasma-Electrodynamics (ROPE)

** WORDSNOTFOUND*

ABQ:NC
ABA: Author (revised)

Thus, the potential distribution in space is
independent of the density distribution of the
particles in the SUPSmodel but it does depend on
the density distribution of the particles in the
SUPSmodel. The evolution of the potential
distribution in the SUPSmodel is described. When
the spherical satellite is charged to a highly
positive potential and immersedin a plasma with a
uniform magnetic field, the formation of an

electron torus in the equatorial plane (the plane
in perpendicular to the magnetic field) and
elongation of the torus along the magnetic field
are found in both the SIPS and the SUPSmodels but

the shape of the torus is different. The areas of
high potential that exist in the polar regions in
the SUPSmodel exaggerate the elongation of the

electron torus along the magnetic field.
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The current collected by the satellite for
different magentic field strengths is investigated

in both models. Due to the nonlinear effects
present in SUPS,the oscillating phenomenonof the
current collection curve during the first i0

plasma periods can be seen (this does not appear
in SIPS). From the parametric studies, it appears
that the oscillating phenomenonof the current
collection curve occurs only when the magnetic
field strength is less than 0.2 gauss for the
present model.
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